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ABSTRACT 

The aim of this paper is to provide an extended method to compensate remaining unbalances 
at magnetic bearings. The compensation signal will still be generated by a MLP-network. 
Only now, the network needs very few training data, other values will be learned during 
operation with the aid of a quality criterion. 

INTRODUCTION 

Active magnetic bearings have been used in high speed applications due to their durability, 
operating precision and the adjustability of the bearing stiffness. Unbalances are measureable 
by simple means and principally removeable with conventional methods. They cannot be 
eliminated completely though, and radial forces are still at work in the high speed range. So 
remaining unbalances can limit the maximum rotational speed. In principle there are two 
categories of methods for unbalance compensation: close loop control methods (Ahrens, et. 
al., 1996; Namerikawa et. al, 1996) and open loop methods (Knospe et. al., 1996). The main 
problem of the first technique is the stability of the control loops. Furthermore, a remaining 
disturbance has to be left for function. Disadvantage of the open loop method is that 
parameters have to be inserted any way. This paper describes a method tackling this problem 
with the aid of neural networks. 
Figure 1 shows the complete test set-up. Basis is a common 75 kW induction motor. The time 
discrete controller is implemented on a TMS 320-C40 signal processor. 

UNBALANCES 

As mentioned above, remaining unbalances are inevitable for high speed rotors. A balanced 
shaft can be assumed as a stiff one in speed ranges below approximately the half of first 
resonant frequency. Further on an abstract level the shaft is subdivisioned into many very 
small disc (Fig.2). 
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Figure 1: Active magnetic bearing 

Figure 2: Subdivided shaft with masses 

The projection of the centrifugal forces to the x-axis of the non rotating coordinate system of 
each axis 

Fxi = CD ai cos(cot + ^ ) 
which leads to the total force 

i 

= a)2acos(G)t + 0) 

The total moment of the unbalance forces in respect to the CoG 

(1) 

(2) 
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M y = H z i F x i = z i a i c o s ( a * + 
(3) 

= o) Acos(cot + y/) 

To calculate the balance of forces and moments the bearing-forces , F x B and their 

moments, -b^F^ and &2̂ xB ^ave to be respected. In compliance with the balance equations 

Fx 

we get 

-biFxA+b2FxB+My = 0 
(4+5) 

FxA = 
My-b2Fx 

FXB=-

bi+b2 

My+b^ 
(6+7) 

bi +b2 

for the balance forces. Both, the F x and the My are sinusoidal signals where the frequency co 
refers to the axis' rotational speed. Therefore, the bearing forces, which are a weighted sum of 
both F x and My, are sinusoidal functions: 

FXA =031aA sin(a)t + <l)A) 

FxB=6>2dB sin(cot + (t>B) 
(8+9) 

with the same frequency but different amplitudes and phases. 
In the stator reference system these forces can be assumed as sinusoidal disturbances 

for the respective axis. This disturbance can neither be influenced nor measured. It's only 
possible to see the effects of the forces in the position of the shaft. 
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Figure 3:Effect of unbalances 
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In principle there are two categories of methods for unbalance compensation: close loop 
control methods (Ahrens, et. al., 1996; Namerikawa et. al, 1996) and open loop methods 
(Knospe et. al., 1996). The main problem of the first technique is the stability of the control 
loops. Furthermore, a remaining disturbance has to be left for function. In our open loop 
method the compensation signal 

Ucomp — A • siniojt + (p) (10) 

is added to the controller output. The compensation signal has to be chosen according to the 
speed such that the tolerance of cyclic running is as small as possible throughout the whole 
speed range. It will be generated by a sinus generator or by a digital signal processor. The 
position tolerance caused by the unbalances can be limited so to 10% of the uncompensated 
value. The great disadvantage of this methods of compensation is, that A and ^ have to be 
insert manually. 

PARAMETERS CALCULATED BY A MULTILAYER PERCEPTRON (MLP) 

The test set-up, a magnetic beared turbo fan, works in a speed range from 0 to 6000 r.p.m. 
Considerable unbalances do not occur below approximately 3000 r.p.m. Further a neural net 
was trained with experimentally determined values of A and tp for the whole speed range. 

training 
A <(> COr 

(Or working 
s m 

w=0 e 
.Q , G,(p) 

unbalance 
z 

6 u G2(p) o <y 
+ + + 

GJCP) 

Figure 4: Block diagram bearing axisfGjfp) = transfer function of controller; 
Giif) = transfer function of amplifier; G3(p) = transfer function of sensor) 

Figure 4 shows a block diagram of one independent bearing axis including the compensation 
for unbalances with the aid of neural network. The first tests served to find an optimal 
network topology. It must to be able to leam all values of A and § for all possible working 
points. Therefore a dense net of amplitudes and angles was determined experimentally and fed 
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to a network. The compensation was realized by the digital signal processor, A and <|> were 
inserted manually. The aim is to leam the two nonlinear function A=f(Gj) and §=f(a)). The 
number of neurons must be sufficient to store the information. On the other hand the training 
time becomes longer with every neuron more. The root-mean-square rms of the remaining 
ripple can be used as a characteristic for the quality of compensation. Still, there is no definite 
connection between a too high rms and the single compensation parameter. It remains imclear 
whether the magnitude or the angle or both must be changed to improve the compensation. 

NETWORK EMPLOYED 

Multilayer - Perceptron networks combined with the backpropagation algorithm are able to 
leam every nonlinear function. Therefore the continuous differentiable sigmoid function was 
used as the activation function: 

1 + e -cx 

The rotor speed is the input data. Magnitude and angle will be calculated as output data. 
Figure 5 shows the notational conventions. 
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Figure 5: Multilayer perceptron employed 

The neuron output values are calculated: 

Oj = S 2>0 ^ 
V j = l 

(12) 

Backpropagation is a simple gradient descent method. The aim is to look for the minimtim of 
the error function. With further applications of the chain rule the weight changes of the 
neurons are calculated as follows: 
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dE dE 
(13) 

Furthermore, some variations of backpropagation are implemented in order to improve the 
learning process: 
a momentum term a D m w^t- l) added to the weight change aiming at different learning 
speeds (on plateaus acceleration and in gorges delayal) 
a weight decay term -d Wjj(t-l) added to the weight change to limit the weights 
a quickpropagation algorithm to speed up the training with backpropagation in general 
flat-spot-elimination means that a constant value will be added to the sigmoid function. 
The following network configuration was used to leam the training data: 

- input layer -1 input neuron (rotor speed) / 1 Bias 
- hidden layer -15 hidden neuron / 1 Bias 
- output layer - 2 output neurons (magnitude, angle) 

I f the learning rate or momentum term were higher than indicated above, the weight 
corrections would soon become so high that the floating point overflow occurs. 

To provide a real advantage to the conventional method, the network should need to be 
fed with only very few values of magnitudes and angles. The other values will be learned 
online during operation. Therefore the rms is used as a quality criterion.The network should 
leam further online with the help of the quality criterion. The simulation was started with only 
3 learning objects (A and ^ for 3 speeds). After the square error became under 0.0001 a new 
learning object was added. 
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Figure 6: Adding learning objects 

Figure 6 shows the behaviour of the square error adding new learning objects. It is thus 
possible to determine a dense net of correct compensation parameters, without leaving a 
safety operating area with the drive. 
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MEASURED RESULTS 

Figure 7 shows a comparison between the behaviour of the uncompensated and the 
compensated system (one bearing). The position tolerance will be limited to roughly 6nm 
(pic-pic). The remaining noise (see enlargement) of the compensated positions is caused by 
magnetic forces of the the motor windings. The measured noise of the capacity measuring tool 
used is approximately 1,5 nm. That is the lower limit for a sensible compensation for 
unbalances. 
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Figure 7: Comparison compensated-uncompensated 
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PROGRAMM STRUCTURE 

The algorithms for the neural network are implemented in common C. They run with DOS on 
every system. The structure is completely dynamic not object orientated. It can be stopped at 
any definite point and continued later. The network data will be saved automatically. The 
backpropagation algorithm has optional variations. 
Furthermore, all interesting information like square error, number of iterations and the 
input/output values of all neurons are graficaly retrievable. 
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Figure 8: Hardware structure 

The signal processor calculates the speed from of the 0-position data and writes the speed 
together with the actual magnitude and angle and the rms into files. The neural network, 
which is implemented on the personal computer, is able to read the files and leams with the 
aid of these data (Figure 8). 
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CONCLUSIONS 

The neural net structure is realized as a dynamic one so it is possible to use it in other 
applications. The aim of secondary work is to control the whole bearing system including the 
compensation for unbalances future with the aid of a neural network. 
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NOMENCLATURE 

F = force c = slope constant of sigmoid function 
eo = rotor speed o = network output 
a = unbalances w = weights 
tp - angle E = total Error 
M = moment 
A = moment of inertia 


